مراتب علمی

  • اکنون 1389

    استادیار

  • 1389 1380

    مربی

تحصیلات

  • 1389 دکتری

    ریاضی محض

    دانشگاه آزاد-واحدعلوم وتحقیقات تهران

  • 1378 کارشناسی ارشد

    ریاضی محض

    دانشگاه امیرکبیرتهران(پلی تکنیک)

  • 1376 کارشناسی

    ریاضی محض

    دانشگاه تبریز

افتخارت و جوایز

پروژه‌های تحقیقاتی

نمایش:

پژوهش های نوین در ریاضی

حسن خندانی و فرشید خجسته
ژورنال | 1397

چکیده

قضیه نقطه ثابت داربو و تعمیم¬های آن نقش بسیار مهمی در حل وجودی معادلات انتگرال دارد. قضیه نقطه ثابت برای نگاشتهای میر-کیلر جمع شونده یکی از تعمیمهای قضیه داربو است که بسیاری از تعمیمهای دیگر حالت خاصی از آن هستند. در سالهای اخیر، نویسندگان زیادی از این توسیعها برای حل تعدادی از معادلات انتگرال استفاده کرده¬اند. برخی از آنها با استفاده از اندازه نافشردگی و الهام گرفتن از انقباض¬های میر-کیلر در فضاهای متری، یک مشخص سازی برای نگاشتهای میر-کیلر جمع شونده ارایه کرده اند. اما از آنجا که این مشخصه سازی ها نیازمند وجود یک - تابع هستند و پیدا کردن یک - تابع نیازمند تلاش زیادی است بنابراین چنین مشخص سازی هایی عملا بی فایده اند. لذا بر آن شدیم که یک مشخصه سازی جدید برای این نوع عملگرها بیابیم. در این مقاله، با استفاده از مفهوم اندازه نافشردگی یک مشخص سازی جدید برای نگاشتهای میر-کیلر جمع شونده را ارایه می¬کنیم. مشخص سازی حاضر معیاری را بدست می¬دهد که بوسیله آن می¬توان بررسی کرد که یک تعمیم ارایه شده از قضیه داربو یک انقباض میر-کیلر جمع شونده است یا خیر. در پایان با استفاده از مشخص سازی ارایه شده نشان می¬دهیم که بسیاری از تعمیمهای قضیه داربو که تا کنون ارایه شده اند از نوع میر-کیلر جمع شونده هستند.

An extension of Sadoweski theorem and application to measure of noncompactness

Hassan Khandani,
Jounaljournal of fixed point theory | 2018

Abstract

In this paper, we give a generalization of Sadovski i˘ ’s fixed-point theorem for condensing operators, which is slightly more flexible than this result in applying to some different problems. We apply our extension to prove some results in integral equations. At the end, we illustrate our results by concrete examples to confirm that our method can be used effectively to solve some integral equations.

A characterization for Meir–Keeler contractions

Hassan Khandani,
JounalRendiconti del Circolo Matematico di Palermo Series 2 | 2017

Abstract

In this manuscript the notion of S-operators is introduced and as a result a new characterization of Meir–Keeler contractions is presented. Also it is shown that the set of S-operators includes the set of continuous R-contractions, and by providing an example it is justified that this inclusion is proper. Then Edelstein’s theorem for contractive mappings on compact metric spaces is generalized to S0 -operators. Finally the set of S-operators is extended to the set of orbitally S-operators that includes Matkowski contractions.

دروس جاری

سوابق تدریس